16 research outputs found

    On the added value of quad-pol data in a multi-temporal crop classification framework based on RADARSAT-2 imagery

    Get PDF
    Polarimetric SAR images are a rich data source for crop mapping. However, quad-pol sensors have some limitations due to their complexity, increased data rate, and reduced coverage and revisit time. The main objective of this study was to evaluate the added value of quad-pol data in a multi-temporal crop classification framework based on SAR imagery. With this aim, three RADARSAT-2 scenes were acquired between May and June 2010. Once we analyzed the separability and the descriptive analysis of the features, an object-based supervised classification was performed using the Random Forests classification algorithm. Classification results obtained with dual-pol (VV-VH) data as input were compared to those using quad-pol data in different polarization bases (linear H-V, circular, and linear 45º), and also to configurations where several polarimetric features (Pauli and Cloude–Pottier decomposition features and co-pol coherence and phase difference) were added. Dual-pol data obtained satisfactory results, equal to those obtained with quad-pol data (in H-V basis) in terms of overall accuracy (0.79) and Kappa values (0.69). Quad-pol data in circular and linear 45º bases resulted in lower accuracies. The inclusion of polarimetric features, particularly co-pol coherence and phase difference, resulted in enhanced classification accuracies with an overall accuracy of 0.86 and Kappa of 0.79 in the best case, when all the polarimetric features were added. Improvements were also observed in the identification of some particular crops, but major crops like cereals, rapeseed, and sunflower already achieved a satisfactory accuracy with the VV-VH dual-pol configuration and obtained only minor improvements. Therefore, it can be concluded that C-band VV-VH dual-pol data is almost ready to be used operationally for crop mapping as long as at least three acquisitions in dates reflecting key growth stages representing typical phenology differences of the present crops are available. In the near future, issues regarding the classification of crops with small field sizes and heterogeneous cover (i.e., fallow and grasslands) need to be tackled to make this application fully operational

    Floristic Composition Mediates Change in Forage Nutritive Quality of Atlantic Mountain Grasslands after Experimental Grazing Exclusion

    Get PDF
    Simultaneous reduction of biodiversity and forage nutritive value after grazing abandonment represents a critical agroecological problem observed in temperate mountain grasslands. However, how both processes affect each other after the exclusion of large grazers is not well understood. To address this knowledge gap, we used four Atlantic grassland sites in the Aralar masif (northern Iberian Peninsula) to ask whether floristic composition mediates change in forage nutritive quality after grazing exclusion, and, if so, how much of the effect on forage quality is mediated. To examine the effects of grazing exclusion on forage quality and floristic composition a repeated-measures (2005–10) randomized complete block experiment was used. Then, the direct effects of grazing exclusion on forage quality were disentangled from the indirect effects mediated by concurrent change in floristic composition. Grazing exclusion deteriorated forage mineral content, phosphorus content, neutral detergent fiber and, especially, crude protein and enzymatic digestibility. Concurrent floristic change mediated change in crude protein (80%), enzymatic digestibility (55%) and forage content in calcium (31%). Our study shows that plant diversity and forage quality are intimately linked features of Atlantic mountain grasslands and highlights the importance of preserving leguminous and dicotyledonous species to maintain the nutritive value of these grasslands.This research was funded by the Basque Government—Eusko Jaurlaritza—(grant numbers: ETORTEK10/34, IT1022-16), by the UNESCO Cathedra of the University of the Basque Country—UPV/EHU—(grant number: UNESCO07/07), and by the Ministry of Economy and Competitiveness of the Spanish Government (grant number: AGL2013-48361-C2-1-R)

    Variation in the Climate Sensitivity Dependent on Neighbourhood Composition in a Secondary Mixed Forest

    Get PDF
    Understanding the vulnerability of individual trees to climate requires moving from population to individual level. This study evaluates individual tree response in a mixed forest by assessing how size and neighbourhood density modulated growth responses to climate among coexisting tree species. To understand the complete variation in growth responses to climate, it is necessary to consider intrapopulation variability. Trees respond as individual entities, and their response is modulated by their characteristics and neighbourhood context. To assess the individual climate sensitivity, all living Iberian birches, European beeches, and pedunculate oaks trees located in a temperate mixed forest were cored in four 40 m × 40 m plots. Standard ring-width chronologies were built at tree and species level for the 1977–2007 period. Chronologies were related to climatic variables (monthly precipitation, hailstorm and mean temperature, and summer (June–August) precipitation). Growth response to climate varied among species and individual trees. Differences in climate–growth relationship among species could be partially attributed to the different xylem anatomy, since secondary growth of ring-porous pedunculate oak (Quercus robur L.) was mainly dependent on the previous-winter climatic conditions (January temperature), while for the diffuse-porous Iberian birch (Betula celtiberica Rothm. and Vasc.) and European beech (Fagus sylvatica L.), spring temperature and summer precipitation were the major constraining factors of growth. Tree features and identity of neighbourhood modulated climatic response, especially for Iberian birch and pedunculate oak. Dominant trees in less crowded neighbourhoods responded more intensely to climate factors. Understanding the individual variability of growth responses to climate will provide more realistic predictions of forests response to climate change.Special thanks to Silvia Martinez de Olcoz for assistance with the fieldwork and the measurements of the tree-rings. Urkiola Natural Park provided the facilities for field work. Urkiola Natural Park provided the facilities for field work and financial support. Additional financial support was provided by a Basque Government (Grupo de Investigacion Consolidado: Grupo Estudio en Flora, Vegetacion y Ecosistemas Terrestres). Furthermore, this work has been supported by the projects CGL2012-34209 and CGL2015-69186-C2-1-R (Spanish Ministry of Economy and Competitivity) and by the Excellence Network "Ecometas" (CGL2014-53840-REDT)

    Influence of Surface Roughness Spatial Variability and Temporal Dynamics on the Retrieval of Soil Moisture from SAR Observations

    Get PDF
    Radar-based surface soil moisture retrieval has been subject of intense research during the last decades. However, several difficulties hamper the operational estimation of soil moisture based on currently available spaceborne sensors. The main difficulty experienced so far results from the strong influence of other surface characteristics, mainly roughness, on the backscattering coefficient, which hinders the soil moisture inversion. This is especially true for single configuration observations where the solution to the surface backscattering problem is ill-posed. Over agricultural areas cultivated with winter cereal crops, roughness can be assumed to remain constant along the growing cycle allowing the use of simplified approaches that facilitate the estimation of the moisture content of soils. However, the field scale spatial variability and temporal variations of roughness can introduce errors in the estimation of soil moisture that are difficult to evaluate. The objective of this study is to assess the impact of roughness spatial variability and roughness temporal variations on the retrieval of soil moisture from radar observations. A series of laser profilometer measurements were performed over several fields in an experimental watershed from September 2004 to March 2005. The influence of the observed roughness variability and its temporal variations on the retrieval of soil moisture is studied using simulations performed with the Integral Equation Model, considering different sensor configurations. Results show that both field scale roughness spatial variability and its temporal variations are aspects that need to be taken into account, since they can introduce large errors on the retrieved soil moisture values

    Applicability of the MultiTemporal Coherence approach to Sentinel-1 for the detection and delineation of burnt areas in the context of the Compernicus Emergency Management Service

    No full text
    In the framework of the Copernicus Emergency Management Service (EMS) Mapping Validation, the applicability of the MultiTemporal Coherence (MTC) technique using Sentinel-1 data and the software made available by the European Space Agency (ESA), the Sentinel application Platform (SNAP), for the detection and delineation of burnt areas was tested. The main purpose of the study was to test a methodology that would benefit from the advantages of delineating burnt areas based on radar data with respect to optical data due to its capacity to acquire data both night and day and to avoid the interference of clouds and/or smoke. Moreover, the study aimed to acheive the delineation of the burnt areas using Sentinel-1 and SNAP in the frame of an emergency mapping where processing time is constrained due to the necessity of giving a quick response to the emergency. Four Sentinel-1 images were acquired over a mountainous area mainly covered by Mediterranean vegetation that suffered from massive forest fires in the summer of 2016. The burnt area delineation was obtained by an object-based image analysis (OBIA) of the resulting MTC image followed by a visual inspection. The effects of the polarization, the acquisition mode, and the incidence angle of the synthetic aperture radar (SAR) imagery were studied in order to assess the contribution of these sensor varaibles on the results. Results of the Sentinel-1 based delineation were compared to those using optical imagery, which is traditionally used for this application. Therefore, the fire delineation that was derived was compared to that derived using three optical images: pre- and post-event Sentinel-2 images and a post-event SPOT 6 image. The first two were used to calculate the differences of the burnt area index (dBAI), used to derive the burnt area delineation by OBIA and photo interpretation with the help of the SPOT 6 image. Results of the comparison showed the feasibility of using the MTC technique for burnt area delineation, as high over all accuracy values were observed when compared to the burnt area delineation derived from optical imagery. The importance of the incidence angle of the Sentinel-1 images was assessed as well, with lower angles resulting in higher overall accuracies. In addition, the availability of double polarization of the Sentinel-1 images, allowed us to give recommendations regarding which polarization gave the best results. The potential for the use of SAR data, obtaining equivalent results to those obtained from optical imagery, is significant in an emergency context given that radar sensors acquire images continuosly and in all weather conditions.JRC.E.1-Disaster Risk Managemen
    corecore